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A correct mathematical formulation is proposed for the problem of controlling 
cooling during hardening of elastoplastic samples. The optimal controls for 
surface and through hardening were found from a numerical experiment. 

i. It is well known that quench hardening of structural carbon steels depends strongly 
on the rate of cooling. The distribution of cooling rates in the sections of quite brittle 
real machine parts is extremely nonuniform. As a result, structure formation proceeds dif- 
ferently at different points in the sample. On the other hand, when the rate of surface 
cooling is increased the stress gradient increases. Obviously, the nonuniformity of struc- 
ture formation over the cross section of the sample affects the stress field, but even the 
stresses can have a definite effect on structure formation in the process of hardening [i, 2]. 
It is desirable to take this effect into account in order to obtain more complete information 
about the character of structure formation during cooling. In this connection there arises 
the problem of determining the optimal rate of surface cooling which gives the desired struc- 
ture of the surface layer. 

In this paper, with the help of a mathematical experiment on a computer, we solve this 
problem of controlling the technological process. Problems of this class are improperly 
posed, and in constructing a stable algorithm for finding the control function we make use 
of the theory of regularization [3]. This makes it possible to obtain a more detailed solu- 
tion than in the case of [4], where this problem is also studied. On the other hand, in 
order to calculate variational problems of temperature and mechanical fields as well as the 
distributions of the microstructural components of the material we employ a quite complete 
physicomathematical model constructed on the basis of [i, 5, 6]. This is a self-consistent 
"evolutionary system" of equations which includes the following: a) nonlinear heat-conduction 
equation with convective transfer and radiative boundary conditions and taking into account 
the release of latent heat accompanying phase transitions; b) nonlinear equations of the 
theory of plastic flow for calculating stress and strain fields, including the structural 
component of the strain tensor and a component due to the plasticity of perlite and martensite 
transformations; c) working formulas for determining the perlite, martensite, and austenitic 
components based on the Jones-Mell hypothesis with a correction for the nonisothermal nature 
of the process of decomposition of austenite and taking into account the effect of stresses 
on this process; and d) at the stage of induction heating preceding hardening the system 
also includes Maxwell's equations in the quasistationary approximation. 

We employed iterative difference methods, similar to those of [4, 7], in order to solve 
this problem. We now consider the mathematical formulation of the control problem. 

2. Let Sp(r, t) be the distribution of the fractional component of the perlite phase 
accompanying decomposition of austenite into perlite and martensite. Then the condition 
of maximum content of the martensite component in the layer [•*, R], O~R*<R (R is the 
radius of the sample) corresponds to a minimum of the integral 

R 
~ = .t" ~ (r, t) dr. 

R* 
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Fig. i. Step functions controlling the surface 
cooling for regimes A (a) and B (b). h, W/(m2.C); 
T, sec. 
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Fig. 2. Distribution of the martensite component ~m (a); ac- 

cumulated plastic strain [{ (b); residual tangential stresses 
088, kg/mm 2 (c): i) regime~A, 2) regime B. R, mm. 

This condition must be supplemented with conditions following from the interaction of 
structure--formation and elastoplastic-deformation processes. The austenite--martensite 
transformation in the surface layer results in a positive change of volume Av, which in 
turn causes compression at interior points of the sample and results in inversion of the 
axial and tangential stresses in the surface layer and compressive stresses at interior 
points, a phenomenon noted in practice and obtained as a result of mathematical modeling 
[2, 8]. In this connection there arise a number of problems. 

On the one hand, in the case of plastic strains this phenomenon can result in the fact 
that the tangential tensile stresses in the surface layer will be of a residual character. 
These stresses can lead to the formation and development of cold cracks on the surface of 
the sample. In order to avoid such effects it is desirable to impose with the help of the 
functional 

R 

0 

the condition that the accumulated plastic strain -Pc i be minimum at all points of the sample. 

We note that the last condition does not always solve the problem of crack formation, 
and after the variational problem including this condition is solved the quality of the 
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obtained sample must be checked. This can be done with the help of the threshold value of 
the fracture toughness K1rth, determined from the experiment of [9], as well as the admis- 
sible value of the crack depth s according to the state standard and obtained by solving 
the problem of the residual distribution o80 of tangential stresses in the surface layer. 
Then the quality of the sample can be checked according to the condition [9] 

K1 = 1,12%e (R)-VTl/d~ ~ KI rth, 

where ~ is a function that takes into account the shape of the crack (for surface defects 
in blanks r = i). 

On the other hand, the most characteristic aspect of the structure formation process 
is that the perlite fraction increases and the martensite fraction decreases away from the 
surface toward the center of the sample [i, i0]. But the compressive stresses at interior 
points of the sample can result in an anomalous increase in the martensite and decrease 
in the perlite components, a phenomenon observed in practice and called the "inverse harden- 
ing effect." The reasons for the appearance of this effect and measures taken to prevent 
it were discussed in [8, i0]. Here we can impose two different conditions, depending on 
the value of the parameter R*. In the case of through martensitic hardening (R* = 0) it is 
desirable to impose with the help of the following functional r (regime A) the condition 
that the radial distribution of the perlite component be monotonic and the condition that 
the perlite component can increase at interior points of the sample: 

R 

d) a = [ q~(r, t) dr, 
5 

(r ,  t )  = 
/ 8~p '~2 . Or 

O, if ~rP ~ O. 

d0, 

In those cases when formation of 90% martensite is required only in the surface layer 
6 = R--R* (6 = 10-15% R), it is useful to impose a stricter condition with the help of the 
functional r (regime B) on the formation of the perlite component: 

R* 

r  = 5 [1 - -  ~ (r, t)] cir. 
0 

The quantities r (i = i, 2, 3) and KI, introduced above, are functionals of the para- 
meter controlling the process. For this parameter we take a time-dependent heat-transfer 
coefficient h(t) under the condition of heat transfer at the surface taking into account 
convection and radiation: 

- -  )~ (T) ~ ~=R =h(t)  (T - -  To) ,=,~ -}- ~')~ (T ~ - -  T~) ,=R' 

where %(T) is the thermal conductivity, o is the Stefan--Boltzmann constant, X is the emis- 
sitivity factor of the body, and T o is the temperature of the surrounding medium. 

In accordance with the concept of regularization we employ an approximation of the 
function h(t), belonging to some compact set. Let h(t) be defined in some segment [to, t], 
where t o is the start of the process and t is an a priori fixed quite large quantity -- the 
moment at which the sample has completely cooled. We divide the time segment into N equal 

parts [tj-l, tj], j = i, N, and define on this set a piecewise-constant bounded function: 
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h(t) = hj, t ~ lO_.  01, hf<~ hj<~j ,  j = I ,  N. 

We assume that the values of ~j and hj are known a priori from the experimental data set. 
Thus the control function h(t) sought on each time segment [tj-1, tj] is determined on 

N 
some compact set ~?~={h/]hj<~h/<~-~/}. Union of such sets P = UP/ is a compact set, and 

7"=I 

therefore on the segment [t o , t] h(t) belongs to the compact set h(t) c p. 

Now the optimal equation can be sought as the solution of the variational problem 

inf ~ [h] = inf {Y1~1 [h] @ y ~  [h] @ Ysr [h] } 
h~P h~P 

under the condition KI[h]~KIrul, t = [. Here Yi are weighting factors, introduced taking into 

account the difference in the dimension of the functionals (Yi= i/l~i. ~ = 1,3---). In the case 

R* = R -- 6 the last term is replaced with T3~3 [hi. 

We now examine the elements of the algorithm for solving the problem posed. 

3. In practice, it is found that it is more efficient to minimize the functional 
successively on the time segments [tj-1, tj]: 

3 

infqb[h] = in[ I ~  TicDZ [h] 
hj~Pj hj~Pj ' i = - I  f 

under the condition Kl[h]-~KIrt~,  r = [ .  

Qualitative analysis of the rate-of-cooling fields, performed based on the scheme of 
optimal cooling in [2], leads to the conclusion that in order to avoid "sliding down" into 
a local minimum at the very beginning of the cooling process (when, for example, #i = 0, r = 0, 
#3 = 0) the maximum admissible rate of cooling for which plastic strain does not yet occur 
should not yet occur should be provided. For this, it is sufficient to replace the function- 
al Ca with the functional ~'2: 

qb2* ~ i (/52' if @2>0, 

Ir if q52=0 , 

where ~* is a constant, taken as the largest value max 4. Since we are studying only hj~Pj 

deformations for which s~ ~I it is sufficient to set ~* = R. 

Thus the initial problem reduces to the problem of minimizing the functional ~ with 
respect to one variable -- finding the element hj successively on each segment [tj-1, tj]. 

Since h c pj, the sequence {@n>} minimizing the functional r turns out to be regularized 

[3]. Since r is nonconvex on the entire set P, the minimizing sequence is constructed by a 
complex method: at the first stage the method of covering of the set Pj by a uniform grid 
is employed; at the second stage the method of steepest descent is employed [ii]. The 
results presented below confirm that our minimization algorithm is efficient. 

4. Calculations in the case of the two optimization regimes (A) and (B) were performed 
for a 20 mm in diameter No. 40 steel sample, heated uniformly up to the temperature of com- 
plete austenization 860~ Figure 1 shows the control functions which are the solution of 
such problems. 

In accordance with these results (for simple carbon steels) at the initial stage of 
cooling, before the austenitic-perlite transformation starts, forced cooling is not recom- 
mendedi(this will prevent the development of significant plastic deformations). At the 
next stage at which the surface layers pass through the temperature of austenitic-perlite 
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transformation the rate of cooling should be significantly increased in order to avoid the 
formation of a perlite structure in the surface layer. In the case of through martensitic 
hardening (see Fig. la) the time interval during which the cooling rate is high should be 
quite long and the rate of cooling should decrease somewhat after all points of the sample 
have passed through the temperature of the austenite-perlite transformation. In the case 
of surface martensitic hardening (Fig. ib) there should be a quite sharp "peak" in the rate 
of cooling. The "trough" following this peak prevents reverse hardening, associated with 
the back effect of the stress field on the formation of perlite structure. After the 
austenite-perlite transformation is competed, as in the first case, the rate of cooling 
must be increased. 

The distribution of the martensite component in the hardened sample (Fig. 2a) indicates 
the effectiveness of both hardening regimes. However the development of plastic deformation 
in this sample could not be avoided (see Fig. 2b). It should be noted that plastic strains 
appear at the moment of forced cooling of the sample -- at the stage when the surface layers 
pass through the process of decomposition of austenite. The quality of the sample for both 
hardening regimes was checked with the help of the distribution of residual tangential stres- 
ses (Fig. 2e). Since compressive stresses (066 (R) < 0) form on the surface of the sample 
while tensile stresses form in the interior zones (at a depth up to one-half the radius), 
there is no possibility for cold cracks to form; this confirms that our solution of the 
optimization problem is efficient. 

Thus the methods developed for solving the optimization problem can be used to solve a 
wide class of problems concerning the optimal control of the hardening process. The problems 
involve choosing the depth ~ of the hardened layer and regulating the level of residual stres- 
ses or the magnitude of the accumulated plastic strain. 

The cooling regimes obtained could aid in conducting more efficient and optimal harden- 
ing processes under production conditions for a wide class of steels. 
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